skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Aiswarya, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aiswarya, C; Mehta, Ruta; Roy, Subhajit (Ed.)
    The problem of computing distances of error-correcting codes is fundamental in both the classical and quantum settings. While hardness for the classical version of these problems has been known for some time (in both the exact and approximate settings), it was only recently that Kapshikar and Kundu showed these problems are also hard in the quantum setting. As our first main result, we reprove this using arguably simpler arguments based on hypergraph product codes. In particular, we get a direct reduction to CSS codes, the most commonly used type of quantum code, from the minimum distance problem for classical linear codes. Our second set of results considers the distance of a graph state, which is a key parameter for quantum codes obtained via the codeword stabilized formalism. We show that it is NP-hard to compute/approximate the distance of a graph state when the adjacency matrix of the graph is the input. In fact, we show this is true even if we only consider X-type errors of a graph state. Our techniques moreover imply an interesting classical consequence: the hardness of computing or approximating the distance of classical codes with rate equal to 1/2. One of the main motivations of the present work is a question raised by Kapshikar and Kundu concerning the NP-hardness of approximation when there is an additive error proportional to a quantum code’s length. We show that no such hardness can hold for hypergraph product codes. These observations suggest the possibility of a new kind of square root barrier. 
    more » « less